ALS(筋萎縮性側索硬化症)に負けないで
全世界から最新の治療情報を見つけ出し、ここで紹介します。完治するまで戦い続けましょう!
201303<<123456789101112131415161718192021222324252627282930>>201305
神経回路形成に必要な神経細胞の動きを制御する新規分子メカニズムを発見
神経伸長制御の仕組みを解明  岡山大・竹居教授、山田准教授ら

岡山大大学院医歯薬学総合研究科の竹居孝二教授(生化学)と山田浩司准教授(同)らは、神経細胞が回路網を形成するメカニズムの一端を解明。
特殊なタンパク複合体がリング状などに変形しながら、細胞骨格となる分子・アクチン線維を束ねるなどして回路を伸ばしていた。
脊髄損傷患者の神経回路再生など新たな治療法につながる成果という。

ヒトが筋肉を動かしたり、学習や感情といった機能発揮に不可欠な神経回路は全身に張り巡らされている。
形成過程では神経細胞が細長い突起を伸ばし、筋肉細胞などとシナプス(接合部)でつながる。
突起先端部(成長円錐えんすい)はアメーバ状で、内部では細胞骨格となる無数のアクチンが集合して線維を形成。
その線維の集まりが伸びるが、どの分子がそれを制御しているかは不明だった。

グループは、神経の情報伝達を円滑に行うためにシナプスに存在する「ダイナミン1」と、アクチン集合を促進する「コルタクチン」という二つのタンパク質に着目。
アクチンを含めた3種類を作り、試験管内で反応させて電子顕微鏡で観察した結果、
タンパク質同士が結合して複合体になり、リング状や直線状に変形しながら、十数本のアクチン線維を束ねていた。

一方、特殊な薬剤でダイナミン1の機能を阻害した結果、アクチン線維が短く、成長円錐が小さくなったという。
グループはダイナミン1がアクチン線維を集合させ、神経細胞の伸長を制御していると結論付けた。
成果は米神経科学誌に掲載された。

竹居教授は「アクチン線維はがん細胞にも多く存在する。
ダイナミンの研究などを進め、がん転移の仕組み解明や転移阻害薬の開発にもつなげたい」としている。

岡山大学プレスリリース
http://www.okayama-u.ac.jp/tp/release/release_id15.html
スポンサーサイト
細胞内の“ごみ掃除”(自食)に関わる遺伝子の異常が知的障害を引き起こす~患者における突然変異の発見から~
横浜市立大学 学術院医学群 遺伝学 才津 浩智准教授、松本 直通教授ら研究グループは、SENDAと呼ばれるまれな脳の病気の原因遺伝子を同定しました。この遺伝子は、細胞内で自食作用(細胞内の不要成分を自ら分解する働き)に関わっており、細胞内の自食作用の異常が脳内の細胞の異常が知的障害を引き起こす可能性が示されました。この研究は、東京大学大学院医学系研究科・西村 多喜助教、水島昇 教授(分子生物学分野)、群馬大学大学院医学系研究科・村松 一洋助教(小児科学)を中心とする小児神経専門医グループらとの共同研究による成果であり、横浜市立大学先端医科学研究センターが推進している研究開発プロジェクトの成果のひとつです。

詳しくは、横浜大学プレスリリース
http://www.yokohama-cu.ac.jp/univ/pr/press/130220_a.html
東大がひも状の細胞組織を作製 移植医療に応用へ
科学技術振興機構 戦略的創造研究推進事業ERATO「竹内バイオ融合プロジェクト」の竹内 昌治 リーダー(東京大学 生産技術研究所 准教授)と尾上 弘晃(同 助教、プロセス融合グループ グループリーダー)らは、細胞とコラーゲンの混合溶液を微小な管に流しながら固めて培養することで、マイクロスケールのファイバー形状(ひも状)の細胞組織を人工的に構築する方法を開発しました。

臓器や組織の置換を目指した再生医療研究では、人工的な3次元細胞組織を構築する技術の開発が求められています。これまでに、皮膚や軟骨、心筋、網膜など構造が比較的単純な細胞組織は人工的に作られ、一部は移植医療の現場で使われてきましたが、肝臓や膵臓のように多様な細胞が複雑な構造を形成している臓器を人工的に構築することは難しく、再生医療の実現に向けた究極的な目標の1つとなっています。このような臓器では、血管や神経を含む様々な種類の細胞が、数10~数100マイクロメートルのオーダーで3次元的に微細配置されたセンチメートルサイズの構造を形成しており、体液の循環を利用して必要な生体分子の分泌やろ過などの複雑な機能を発揮しています。

このような機能を果たす人工組織を構築するためには、細胞を生きた状態のまま数10~数100マイクロメートルの精度で配置して、センチメートルサイズの大きさまで集積することが必要ですが、今の段階ではそのような技術は存在しないのが現状です。今回研究グループは、様々な種類の細胞を直径およそ100マイクロメートル、長さ数メートルのファイバー状の組織に成形する方法と、そのファイバー形状の細胞組織をあたかも「ひも」のように扱い、3次元的に織ったり巻いたり束ねたりして組み上げることで、細胞の機能を維持した状態でセンチメートルサイズの3次元的な細胞組織を構築する方法を開発しました。また実際に、膵島細胞のファイバーを糖尿病疾患モデルマウスに移植することで、マウスの血糖値を正常化させることに成功し、ファイバー状の細胞組織は体内でも機能を発揮し、実際の移植にも応用できる可能性を示しました。

生体内には特に血管や神経、筋肉など繊維状の組織が多く含まれるので、今回の成果は様々な組織の構造を人工的に構築するための基盤技術として幅広い応用が期待できます。さらに、ES細胞注1)やiPS細胞注2)、MSC細胞注3)などに代表される多分化能を持つ幹細胞も、ファイバー状にしてから移植することで生着率が高まることが期待でき、糖尿病や神経損傷などの治療をはじめとした医療応用に幅広い貢献ができると考えられます。

本成果は、英国科学雑誌「NATURE MATERIALS」のオンライン版で2013年3月31日(英国時間)に公開されます。

東京大学プレスリリース
http://www.jst.go.jp/pr/announce/20130401/index.html
copyright © 2017 Powered By FC2ブログ allrights reserved.